Minggu, 26 Juni 2011

REAKTOR NUKLIR

REAKTOR NUKLIR
 Reaktor nuklir adalah tempat terjadinya reaksi inti berantai terkendali, baik pembelahan inti (fisi) atau penggabungan inti (fusi). Fungsi reaktor fisi dibedakan menjadi dua, yaitu reaktor penelitian dan reaktor daya.
Pada reaktor penelitian, yang diutamakan adalah pemanfaatan netron hasil pembelahan untuk berbagai penelitian dan iradiasi serta produksi radioisotop. Panas yang ditimbulkan dirancang sekecil mungkin sehingga panas tersebut dapat dibuang ke lingkungan. Pengambilan panas pada reaktor penelitian dilakukan dengan sistem pendingin,yang terdiri dari sistem pendingin primer dan sistem pendingin sekunder. Panas yang berasal dari teras reaktor diangkut oleh air di sekitar teras reaktor (sistem pendingin primer) dan dipompa oleh pompa primer menuju alat penukar panas. Selanjutnya panas dibuang ke lingkungan melalui menara pendingin (alat penukar panas pada sistem pendingin sekunder). Perlu diketahui bahwa antara alat penukar panas, sistem pendingin primer atau sekunder tidak terjadi kontak langsung.
Sementara, pada reaktor daya, panas yang timbul dari pembelahan dimanfaatkan untuk menghasilkan uap yang bersuhu dan bertekanan tinggi untuk memutar turbin.
KOMPONEN REAKTOR NUKLIR


Reaktor nuklir pertama kali dibangun oleh Enrico Fermi pada tahun 1942 di Universitas Chicago. Hingga sat ini telah ada berbagai jenis dan ukuran rekator nuklir, tetapi semua reaktor atom tersebut memiliki lima komponen dasar yang sama, yaitu: elemen bahan bakar, moderator netron, batang kendali, pendingin dan perisai beton.

Gambar 12.1 Skema Dasar Reaktor Nuklir
Elemen Bahan Bakar
Elemen bahan bakar ini berbentuk batang-batang tipis dengan diameter kira-kira 1 cm. Dalam suatu reaktor daya besar, ada ribuan elemen bahan bakar yang diletakkan saling berdekatan. Seluruh elemen bahan bakar dan daerah sekitarnya dinamakan teras reaktor.
Umumnya, bahan bakar reaktor adalah uranium-235. oleh karena isotop ini hanya kira-kira 0,7% terdapat dalam uranium alam, maka diperlukan proses khusus untuk memperkaya (menaikkan prosentase) isotop ini. Kebanyakan reaktor atom komersial menggunakan uranium-235 yang telah diperkaya sekitar 3%.
Moderator Netron
Netron yang mudah membelah inti adalah netron lambat yang memiliki energi sekitar 0,04 eV (atau leih kecil), sedangkan netron-netron yang dilepaskan selama proses pembelahan inti (fisi) memiliki energi sekitar 2 MeV. Oleh karena itu , sebuah raktor atom harus memiliki materaial yang dapat mengurangi kelajuan netron-netron yang energinya sangat besar sehingga netron-netron ini dapat dengan mudah membelah inti. Material yang memperlambat kelajuan netron dinamakan moderator.
Moderator yang umum digunakan adalah air. Ketika netron berenergi tinggi keluar keluar dari sebuah elemen bahan bakar, netron tersebut memasuki air di sekitarnya dan bertumbukan dengan molekul-molekul air. Netron cepat akan kehilangan sebagian enrginya selama menumbuk molekula air (moderator) terutama dengan atom-atom hidrogen. Sebagai hasilnya netron tersebut diperlambat.
Batang Kendali
Jika keluaran daya dari sebuah reaktor dikehendaki konstan, maka jumlah netron yang dihasilkan harus dikendalikan. Sebagaimana diketahui, setiap terjadi proses fisi ada sekitar 2 sampai 3 netron baru terbentuk yang selanjutnya menyebakan proses berantai.
Jika netron yang dihasilkan selalu konstan dari waktu ke waktu (faktor multiplikasinya berniali 1), maka reaktor dikatakan berada pada kondisi kritis. Sebuah reaktor normal bekerja pada kondisi kritis. Pada kondisi ini reaktor menghasilkan keluaran energi yang stabil.
Jika netron yang dihasilkan semakin berkurang (multiplikasinya kurang dari 1), maka reaktor dikatakan berada pada kondisi subkritis dan daya yang dihasilkan semakin menurun. Sebaliknya jika setiap saat netron yang dihasilkan meningkat (multiplikasinya lebih besar dari 1), reaktor dikatakan dalam keadaan superkritis. Selama kondisi superkritis, energi yang dibebaskan oleh sebuah reaktor meningkat. Jika kondisi ini tidak dikendalikan, meningkatnya energi dapat mengakibatkan mencairkan sebagain atau seluruh teras reaktor, dan pelepasan bahan radioaktif ke lingkungan sekitar.
Jelas bahwa sebuah mekanisme kendali sangat diperlukan untuk menjaga reaktor pada keadaan normal atau kondisi kritis. Kendali ini dilakukan oleh sejumlah batang kendali yang dapat bergerak keluar-masuk teras reaktor. Lihat gambar 12.1.
Batang kendalli terbuat dari bahan-bahan penyerap netron, seperti boron dan kadmium. Jika reaktor menjadi superkritis, batang kendali secara otomatis bergerak masuk lebih dalam ke dalam teras reaktor untuk menyerap kelebihan netron yang menyebabkankondisi itu kembali ke kondisi kritis. Sebaliknya, jika reaktor menjadi subkritis, batang kendali sebagian ditarik menjauhi teras reaktor sehingga lebih sedikit netron yang diserap. Dengan demikian, lebih banyak netron tersedia untuk reaksi fisi dan reaktor kembali ke kondisi kritis. Untuk menghentikan operasi reaktor (misal untuk perawatan), batang kendali turun penuh sehingga seluruh netron diserap dan reaksi fisi berhenti
Pendingin
Energi yang dihasilkan oleh reaksi fisi meningkatkan suhu reaktor. Suhu ini dipindahkan dari reaktor dengan menggunakan bahan pendingin, misalnya air atau karbon dioksida. Bahan pendingin (air) disirkulasikan melalui sistem pompa, sehingga air yang keluar dari bagian atas teras reaktor digantikan air dingin yang masuk melalui bagin bawah teras reaktor.
Perisai BetonInti-inti atom hasil pembelahan dapat menghasilkan radiasi. Untuk menahan radiasi ini (radiasi sinar gamma, netron dan yang lain), agar keamanan orang yang bekerja di sekitar reaktor terjamin, maka umumnya reaktor dikungkungi oleh perisai beton.
PEMBAKIT LISTRIK TENAGA NUKLIR
PLTN
Berdasarkan jenis pendinginnya, ada beberapa jenis reaktor. Dalam pembahasan ini akan dibahas pembakit listrik tenaga nuklir yang menggunakan reaktor air bertekanan (Pressurized Water Reactor = PWR).
Dalam PWR, kalor yang dihasilkan dalam batang-batang bahan bakar diangkut keluar dari teras reaktor oleh air yang terdapat di sekitarnya (sistem pendingin primer). Air ini secara terus-menerus dipompakan oleh pompa primer ke dalam reaktor melalui saluran pendingin reaktor (sistem pendingin primer).
Untuk mengangkut kalor sebesar mungkin, suhu air dikondisikan mencapai 3000C. Untuk menjaga air tidak mendidih (yang dapat terjadi pada suhu 1000C pada tekanan 1 atm), air diberi tekanan 160 atm. Air panas diangkut melalui suatu alat penukar panas (heat exchanger), dan kalor dari air panas dipindahkan ke air yang mengalir di sekitar alat penukar panas (sistem pendingin sekunder). Kalor yang dipindahkan ke sistem pendingin sekunder memproduksi uap yang memutar turbin. Turbin dikopel dengan suatu generator listrik, tempat daya keluaran listrik menuju konsumen melalui kawat transmisi tegangan tinggi. Setelah keluar dari turbin, uap didinginkan kembali menjadi air oleh pengembun (condenser) dan kemudian dikembalikan lagi ke alat penukar panas oleh pompa sekuder.
Sistem Keselamatan
Sistem keselamatan operasi reaktor terutama ditujukan untuk menghindari bocornya radiasi dari dalam teras reaktor. Berbagai usaha pengamanan dilakukan untuk melindungi pekerja dan anggota masyarakat dari bahaya radiasi ini. Sistem keselamatan reaktor dirancang mampu menjamin agar unsur-unsur radioaktif di dalam teras reaktor tidak terlepas ke lingkungan, baik dalam operasi normal atau waktu ada kejadian yang tidak diinginkan. Kecelakaan terparah yang diasumsikan dapat terjadi pada suatu reaktor nuklir adalah hilangnya sistem pendingin teras reaktor. Peristiwa ini dapat mengakibatkan pelelehan bahan bakar sehingga unsur-unsur hasil fisi dapat terlepas dari kelongsong bahan bakar. Hal ini dapat mengakibatkan unsur-unsur hasil fisi tersebar ke dalam ruangan penyungkup reaktor.


��Bahan bakar (Pelet) �� Kelongsong �� Tangki reaktor �� Perisai beton �� Sistem penahan baja bertekanan �� Sistem pengungkung/kubah beton
Gambar 12.3. Sistem Penghalang Ganda (Multiple Barrier)
Agar unsur-unsur hasil fisi tetap dalam keadaan terkungkung, maka reaktor nuklir memiliki sistem keamanan yang ketat dan berlapis-lapis. Karena digunakan sistem berlapis, maka sistem pengamanan ini dinamakan penghalang ganda. Adapaun jenis penghalang tersebut adalah sebagai berikut:
1. Penghalang pertama adalah matrik bahan bakar nuklir. Lebih dari 99& unsur hasil fisi akan tetap terikat secara kuat dalam matriks bahan bakar ini.
2. Penghalang kedua adalah kelongsong bahan bakar. Apabila ada unsur hasil fisi yang terlepas dari matriks bahan bakar, maka unsur tersebut akan tetap terkungkung di dalam kelongsong yang dirancang tahan bocor.
3. Penghalang ketiga adalah sistem pendingin. Seandainya masih ada unsur hasil fisi yang terlepas dari kelongsong, maka unsur tersebut akan terlarut dalam air pendingin primer sehingga tetap terkungkung dalam tangki reaktor.
4. penghalang keempat adalah perisai beton. Tangki reaktor disangga oleh bangunan berbentuk kolam dari beton yang dapat berperan sebagai penampung air pendingin apabila terjadi kebocoran.
5. Penghalang kelima dan keenam adalah sistem pengungkung reaktor secara keseluruhan yang terbuat dari pelat baja dan beton setebal dua meter serta kedap udara.

Tidak ada komentar:

Posting Komentar